Novel Object Removal in Video Using Patch Sparsity
نویسندگان
چکیده
The process of repairing the damaged area or to remove the specific areas in a video is known as video inpainting. To deal with this kind of problems, not only a robust image inpainting algorithm is used, but also a technique of structure generation is used to fill-in the missing parts of a video sequence taken from a static camera. Most of the automatic techniques of video inpainting are computationally intensive and unable to repair large holes. To overcome this problem, inpainting method is extended by incorporating the sparsity of natural image patches in the spatio-temporal domain is proposed in this paper. First, the video is converted into individual image frames. Second, the edges of the object to be removed are identified by the SOBEL edge detection method. Third, the inpainting procedure is performed separately for each time frame of the images. Next, the inpainted image frames are displayed in a sequence, to appear as a inpainted video. For each image frame, the confidence of a patch located at the image structure (e.g., the corner or edge) is measured by the sparseness of its nonzero similarities to the neighboring patches to calculate the patch structure sparsity. The patch with larger structure sparsity is assigned higher priority for further inpainting. The patch to be inpainted is represented by the sparse linear combination of candidate patches. Patch propagation is performed automatically by the algorithm by inwardly propagating the image patches from the source region into the interior of the target region by means of patch by patch. Compared to other methods of inpainting, a better discrimination of texture and structure is obtained by the structure sparsity and also sharp inpainted regions are obtained by the patch sparse representation. This work can be extended to wide areas of applications, including video special effects and restoration and enhancement of damaged videos.
منابع مشابه
A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملImproving Exemplar-based Image Completion methods using Selecting the Optimal Patch
Image completion is one of the subjects in image and video processing which deals with restoration of and filling in damaged regions of images using correct regions. Exemplar-based image completion methods give more pleasant results than pixel-based approaches. In this paper, a new algorithm is proposed to find the most suitable patch in order to fill in the damaged parts. This patch selection ...
متن کاملGraphical Epitome Processing by Vincent Cheung A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy
Graphical Epitome Processing Vincent Cheung Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto 2013 This thesis introduces principled, broadly applicable, and efficient patch-based models for data processing applications. Recently, “epitomes” were introduced as patch-based probability models that are learned by compiling together a large number...
متن کامل